Segre's lemma of tangents and linear MDS codes

J. De Beule (joint work with Simeon Ball)

> Department of Mathematics Ghent University Department of Mathematics Vrije Universiteit Brussel

June, 2013 Journées estivales de la Méthode Polynomiale Lille

Jan De Beule Segre – MDS codes

• Alphabet A_q with $q \in \mathbb{N}$ characters,

- Words: concatenations of characters, preferably of a fixed length $n \in \mathbb{N}$
- Code C: collection of $M \in \mathbb{N}$ words
- If *C* is a *q*-ary code of length *n* (i.e. all words have length *n*), then $M \le q^n$.
- *Hamming distance* between two codewords: number of positions in which the two words differ.

ヘロン 人間 とくほど 不良と

- Alphabet A_q with $q \in \mathbb{N}$ characters,
- Words: concatenations of characters, preferably of a fixed length n ∈ N
- Code C: collection of $M \in \mathbb{N}$ words
- If *C* is a *q*-ary code of length *n* (i.e. all words have length *n*), then $M \le q^n$.
- *Hamming distance* between two codewords: number of positions in which the two words differ.

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

- Alphabet A_q with $q \in \mathbb{N}$ characters,
- Words: concatenations of characters, preferably of a fixed length n ∈ N
- Code C: collection of $M \in \mathbb{N}$ words
- If *C* is a *q*-ary code of length *n* (i.e. all words have length *n*), then $M \le q^n$.
- *Hamming distance* between two codewords: number of positions in which the two words differ.

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

- Alphabet A_q with $q \in \mathbb{N}$ characters,
- Words: concatenations of characters, preferably of a fixed length n ∈ N
- Code C: collection of $M \in \mathbb{N}$ words
- If *C* is a *q*-ary code of length *n* (i.e. all words have length *n*), then $M \le q^n$.
- *Hamming distance* between two codewords: number of positions in which the two words differ.

▲ロト ▲圖ト ▲ 国ト ▲ 国ト

- Alphabet A_q with $q \in \mathbb{N}$ characters,
- Words: concatenations of characters, preferably of a fixed length n ∈ N
- Code C: collection of $M \in \mathbb{N}$ words
- If *C* is a *q*-ary code of length *n* (i.e. all words have length *n*), then $M \le q^n$.
- *Hamming distance* between two codewords: number of positions in which the two words differ.

< □ > < 同 > < 回 > < 回 > < 回 >

- Alphabet A_q with $q \in \mathbb{N}$ characters,
- Words: concatenations of characters, preferably of a fixed length n ∈ N
- Code C: collection of $M \in \mathbb{N}$ words
- If *C* is a *q*-ary code of length *n* (i.e. all words have length *n*), then $M \le q^n$.
- Hamming distance between two codewords: number of positions in which the two words differ.

< □ > < 同 > < 回 > < 回 > < 回 >

Let C be a code of length n.

• Minimum distance of C, d(C),

 determines the number of transmission errors that can be detected/corrected.

Fundamental problem of coding theory: construct codes with "optimized parameters".

< ロ > < 同 > < 回 > < 回 > < 回 >

Let C be a code of length n.

- Minimum distance of C, d(C),
- determines the number of transmission errors that can be detected/corrected.

Fundamental problem of coding theory: construct codes with "optimized parameters".

(日)

- The alphabet A_q is the set of elements of a finite field 𝔽_q of order q, q = p^h, p prime, h ≥ 1.
- A linear *q*-ary code of length *n* is a sub vector space of 𝔽ⁿ_q.
- For a linear code *C*, its minimum distance equals its minimum weight.

The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n, M, d). Then $M \leq q^{n-d+1}$.

Corollary

Let C be a linear [n, k, d]-code. Then $k \le n - d + 1$.

Definition

A linear [n, k, d] code C over \mathbb{F}_q is an MDS code if it satisfies k = n - d + 1.

Is there an upper bound on d (for fixed k and q)?

< ロ > < 同 > < 回 > < 回 > < □ > <

The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n, M, d). Then $M \leq q^{n-d+1}$.

Corollary

Let C be a linear [n, k, d]-code. Then $k \leq n - d + 1$.

Definition

A linear [n, k, d] code *C* over \mathbb{F}_q is an MDS code if it satisfies k = n - d + 1.

Is there an upper bound on *d* (for fixed *k* and *q*)?

< ロ > < 同 > < 回 > < 回 > .

The Singleton bound

Theorem (Singleton bound)

Let C be a q-ary (n, M, d). Then $M \leq q^{n-d+1}$.

Corollary

Let C be a linear [n, k, d]-code. Then $k \leq n - d + 1$.

Definition

A linear [n, k, d] code *C* over \mathbb{F}_q is an MDS code if it satisfies k = n - d + 1.

Is there an upper bound on d (for fixed k and q)?

< ロ > < 同 > < 回 > < 回 > .

Special sets of vectors

Definition

Let C be an [n, k, d] code. An $k \times n$ matrix is a generator matrix for C if and only if C is the row space of G.

_emma

An $k \times n$ matrix is a generator matrix of an MDS code if and only if every subset of k columns of G is linearly independent.

Corollary

An MDS code of dimension k and length n is equivalent with a set S of n vectors of \mathbb{F}_q^k with the property that every k vectors of S form a basis of \mathbb{F}_q^k .

Special sets of vectors

Definition

Let C be an [n, k, d] code. An $k \times n$ matrix is a generator matrix for C if and only if C is the row space of G.

Lemma

An $k \times n$ matrix is a generator matrix of an MDS code if and only if every subset of k columns of G is linearly independent.

Corollary

An MDS code of dimension k and length n is equivalent with a set S of n vectors of \mathbb{F}_q^k with the property that every k vectors of S form a basis of \mathbb{F}_q^k .

Special sets of vectors

Definition

Let C be an [n, k, d] code. An $k \times n$ matrix is a generator matrix for C if and only if C is the row space of G.

Lemma

An $k \times n$ matrix is a generator matrix of an MDS code if and only if every subset of k columns of G is linearly independent.

Corollary

An MDS code of dimension k and length n is equivalent with a set S of n vectors of \mathbb{F}_q^k with the property that every k vectors of S form a basis of \mathbb{F}_q^k .

Definition – Examples

Definition

An arc of a vector space \mathbb{F}_q^k is a set *S* of vectors with the property that every *k* vectors of *S* form a basis of \mathbb{F}_q^k .

< □ > < 同 > < 回 > < 回 > < 回 >

Definition – Examples

Definition

An arc of a vector space \mathbb{F}_q^k is a set *S* of vectors with the property that every *k* vectors of *S* form a basis of \mathbb{F}_q^k .

< ロ > < 同 > < 回 > < 回 > .

Bound on the size of arcs (case 1)

When $k \ge q + 1$, example (1) is *better* than (2).

Theorem (Bush 1952)

Let S be an arc of size n of \mathbb{F}_q^k , $k \ge q + 1$. Then $n \le k + 1$ and if n = q + 1, then S is equivalent to example (1)

Jan De Beule Segre – MDS codes

< ロ > < 同 > < 回 > < 回 > < □ > <

Bound on the size of arcs (case 1)

When $k \ge q + 1$, example (1) is *better* than (2).

Theorem (Bush 1952)

Let S be an arc of size n of \mathbb{F}_q^k , $k \ge q + 1$. Then $n \le k + 1$ and if n = q + 1, then S is equivalent to example (1)

(日)

The MDS conjecture

Conjecture

Let $k \ge q$. For an arc of size n in \mathbb{F}_q^k , $n \le q + 1$ unless k = 3 or k = q - 1 and q is even, in which case $n \le q + 1$.

< ロ > < 同 > < 回 > < 回 > .

Questions of Segre (1955)

(i) Given *m*, *q*, what is the maximal value of *I* for which an *I*-arc exists?

- (ii) For which values of k 1, q, q > k, is each (q + 1)-arc in PG(k 1, q) a normal rational curve?
- (iii) For a given k 1, q, q > k, which arcs of PG(k 1, q) are extendable to a (q + 1)-arc?

◆ロ > ◆檀 > ◆臣 > ◆臣 > □

Questions of Segre (1955)

- (i) Given *m*, *q*, what is the maximal value of *I* for which an *I*-arc exists?
- (ii) For which values of k 1, q, q > k, is each (q + 1)-arc in PG(k 1, q) a normal rational curve?
- (iii) For a given k 1, q, q > k, which arcs of PG(k 1, q) are extendable to a (q + 1)-arc?

・ロン・雪と・雪と・ ヨン・

Questions of Segre (1955)

- (i) Given *m*, *q*, what is the maximal value of *I* for which an *I*-arc exists?
- (ii) For which values of k 1, q, q > k, is each (q + 1)-arc in PG(k 1, q) a normal rational curve?
- (iii) For a given k 1, q, q > k, which arcs of PG(k 1, q) are extendable to a (q + 1)-arc?

< □ > < 同 > < 回 > < 回 > < 回 >

Observations

Lemma

Let S be an arc of size n of \mathbb{F}_q^k . Let $Y \subset S$ be of size k - 2. There are exactly t = q + k - 1 - n hyperplanes of \mathbb{F}_q^k with the property that $H \cap S = Y$.

Corollary

An arc of \mathbb{F}_q^3 has size at most q + 2.

Theorem (Segre)

An arc of \mathbb{F}_q^3 , q odd, has size at most q + 1, in case of equality, it is equivalent with example (2).

イロト イポト イヨト イヨト

Interpolation

Lemma

For a subset $E \subset \mathbb{F}_q$ of size t + 1 and $f \in \mathbb{F}_q[X]$, a polynomial of degree t,

$$f(X) = \sum_{e \in E} f(e) \prod_{y \in E \setminus \{e\}} \frac{X - y}{e - y}$$

・ロン・雪と・雪と・ ヨン・

E 990

Interpolation

Lemma

For a subset $E \subset \mathbb{F}_q^2$ of size t + 1 with the property that $(u_1, u_2), (y_1, y_2) \in E$ implies $u_2 \neq 0, y_2 \neq 0$ and $\frac{u_1}{u_2} \neq \frac{y_1}{y_2}$ and $f \in \mathbb{F}_q[X_1, X_2]$, a homogenous polynomial of degree t,

$$f(X_1, X_2) = \sum_{(e_1, e_2) \in E} f(e_1, e_2) \prod_{(y_1, y_2) \in E \setminus \{(e_1, e_2)\}} \frac{y_2 X_1 - y_1 X_2}{e_1 y_2 - y_1 e_2}$$

< □ > < 同 > < 回 > < 回 > < 回 >

Interpolation

Corollary

For a subset $E \subset \mathbb{F}_q^2$ of size t + 2 with the property that $(u_1, u_2), (y_1, y_2) \in E$ implies $u_2 \neq 0, y_2 \neq 0$ and $\frac{u_1}{u_2} \neq \frac{y_1}{y_2}$ and $f \in \mathbb{F}_q[X_1, X_2]$, a homogenous polynomial of degree t,

$$\sum_{(x_1,x_2)\in E} f(x_1,x_2) \prod_{y_1,y_2\in E\setminus\{(x_1,x_2)\}} (x_1y_2 - y_1x_2)^{-1} = 0$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Tangent functions

- Let S be an arc of size n of \mathbb{F}_q^k .
- Choose a set $A \subset S$ of size k 2.
- Then there are t = q + k 1 n tangent hyperplanes on A to S.
- Let f_A^i be *t* linear forms on \mathbb{F}_q^k such that ker (f_A^i) are these *t* tangent hyperplanes

Definition

For a subset $A \subset S$ of size k - 2, define its tangent function as

$$F_A(x) := \prod_{i=1}^t f_A^i(x)$$

Interpolation of tangent functions

Lemma

Let S be an arc of \mathbb{F}_q^k . Let $A \subset S$ be a subset of size k - 2. Then for every subset $E \subset S \setminus A$ of size t + 2,

$$\sum_{x\in E} F_{\mathcal{A}}(x) \prod_{y\in E\setminus\{x\}} \det(x, y, \mathcal{A})^{-1} = 0$$

Jan De Beule Segre – MDS codes

< □ > < 同 > < 回 > < 回 > < 回 >

Generalization

Lemma (S. Ball, [1])

Let S be an arc of \mathbb{F}_q^k . For a subset $D \subset S$ of size k - 3 and $\{x, y, z\} \subset S \setminus D$,

$$F_{D\cup\{x\}}(y)F_{D\cup\{y\}}(z)F_{D\cup\{z\}}(x) = \\ (-1)^{t+1}F_{D\cup\{x\}}(z)F_{D\cup\{y\}}(x)F_{D\cup\{z\}}(y)$$

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Using the generalization

Lemma

Let S be an arc of \mathbb{F}_q^k . For a subset $D \subset S$ of size k - 4 and $\{x_1, x_2, x_3, z_1, z_2\} \subset S \setminus D$, switching x_1 and x_2 , or switching x_2 and x_3 , or switching z_1 and z_2 in

$$\frac{F_{D\cup\{z_1,z_2\}}(x_1)F_{D\cup\{z_2,x_1\}}(x_2)F_{D\cup\{x_1,x_2\}}(x_3)}{F_{D\cup\{z_2,x_1\}}(z_1)F_{D\cup\{x_1,x_2\}}(z_2)}$$

changes the sign by $(-1)^{t+1}$.

◆ロト ◆聞と ◆臣と ◆臣と…

The Segre product

• Let
$$r \in \{1, \ldots, k-2\}$$
.

• Let $D \subset S$ of size k - 2 - r and let $A = \{x_1, \dots, x_{r+1}\}$ and $B = \{z_1, \dots, z_r\}$ be disjoint.

Definition

$$P_{D}(A,B) := F_{D\cup\{z_{r},...,z_{1}\}}(x_{1})F_{D\cup\{z_{r},...,z_{2},x_{1}\}}(x_{2})\cdots F_{D\cup\{z_{r},x_{r-1}...,x_{1}\}}(x_{r})F_{D\cup\{x_{r},...,x_{1}\}}(x_{r+1})}{F_{D\cup\{z_{r},...,z_{2},x_{1}\}}(z_{1})\cdots F_{D\cup\{z_{r},x_{r-1}...,x_{1}\}}(z_{r-1})}$$

ヘロト 人間 とくほ とくほ とう

æ

Exploiting the lemma of tangents

Lemma

Let $D \subset S$ be of size k - 2 - r and let $A = \{x_1, \ldots, x_{r+1}\}$ or $A = \{x_1, \ldots, x_r\}$ and $B = \{z_1, \ldots, z_r\}$ be disjoint subsets of $S \setminus D$. Switching the order in A (or B) by a transposition changes the sign of $P_D(A, B)$ by $(-1)^{t+1}$.

ヘロト 人間 ト イヨト イヨト

э

One more notation

For any subset *B* of an ordered set *L*, let $\sigma(B, L)$ be (t + 1) times the number of transpositions needed to order *L* so that the elements of *B* are the last |B| elements.

Jan De Beule Segre – MDS codes

< ロ > < 同 > < 回 > < 回 > .

э

Exploiting the Segre product

Lemma

Let A of size n, L of size r, D of size k - 1 - r and Ω of size t + 1 - n be pairwise disjoint subsequences of S. If $n \le r \le n + p - 1$ and $r \le t + 2$, where $q = p^h$, then

$$\sum_{\substack{B\subseteq L\\|B|=n}} (-1)^{\sigma(B,L)} \mathcal{P}_{D\cup(L\setminus B)}(A,B) \prod_{z\in\Omega\cup B} \det(z,A,L\setminus B,D)^{-1} =$$

$$(-1)^{(r-n)(nt+n+1)}\sum_{\substack{\Delta\subseteq\Omega\\|\Delta|=r-n}}P_D(A\cup\Delta,L)\prod_{z\in(\Omega\setminus\Delta)\cup L}\det(z,A,\Delta,D)^{-1}.$$

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

3

Theorem (S. Ball, [1])

```
If k \leq p then |S| \leq q + 1.
```

Proof.

- We may assume $k + t \le q + 2$.
- Apply previous lemma with with r = t + 2 = k 1 and n = 0 and get

$$\prod_{z\in\Omega}\det(z,L)^{-1}=0,$$

æ

< ロ > < 同 > < 回 > < 回 > .

which is a contradiction.

A generalization

Theorem (S. Ball and JDB, [2])

If q is non-prime and $k \leq 2p - 2$, then $|S| \leq q + 1$.

Jan De Beule Segre – MDS codes

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・

æ

- S. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, *Journal European Math. Soc.*, 14, 733–748, 2012
- S. Ball, and J. De Beule. On sets of vectors of a finite vector space in which every subset of basis size is a basis II. *Des. Codes Cryptogr.*, 65(1–2):5–14, 2012.

< □ > < □ > < □ > < □ >